

TABLE OF CONTENTS

(O F-To 7<) ol I 11 o T« [Tt 4 [o TR N 1

Chapter 2. ApPliCation....ciceiiiiiiiiiiiiiiiiiieiiiieeieieneteeeetenenctcnensesnasesensssnnnsesnnsonnnsns 2

Chapter 3. ConfigUration.....cicieiiieiiieiiieiieeiieeiiereintesesosasosnsosnsosnsossssssssssssssssssssnsssnses 3

Chapter 4. Initial version of the kernel........cccciviiiiiiiiiiiniiiiiiiiieiiieiiieiineciecsnessnsonses 4

Chapter 5. Updated version of the Kernel........ccceieiiiiiiiiiiiiiiiiiiieeiieeeneecenneecnnneenns 10

CRaPter 6. RESOUICES. . .iiiitiiiintiiiiniieietetiastesenseosestossnstossnsosssstossnssossnsessnssossnssannnse 13
www.nvidia.com

Shared Memory Bank Conflicts Sample v2023.1.0 | ii

Chapter 1.
INTRODUCTION

This sample profiles a CUDA kernel which transposes an N x N square matrix of float
elements in global memory using the Nsight Compute profiler. To avoid uncoalesced
global memory accesses this kernel reads the data into shared memory. The profiler

is used to analyze and identify the shared memory bank conflicts which result in
inefficient shared memory accesses.

Shared memory accesses on a GPU

Shared memory is located on-chip, so it has much higher bandwidth and much lower
latency than either local or global memory. Shared memory can be shared across a
compute Cooperative Thread Array (CTA). In CUDA, CTAs are referred to as Thread
Blocks. Compute CTAs attempting to share data across threads via shared memory must
use synchronization operations (such as __syncthreads ()) between stores and loads to
ensure data written by any one thread is visible to other threads in the CTA.

Shared memory has 32 banks that are organized such that successive 32-bit words map
to successive banks that can be accessed simultaneously. Any 32-bit memory read or
write request made of 32 addresses that fall in 32 distinct memory banks can therefore
be serviced simultaneously, yielding an overall bandwidth that is 32 times as high as
the bandwidth of a single request. However, if two addresses of a memory request fall
in the same memory bank, there is a bank conflict and the access has to be serialized.
The exception to this rule is when all threads read the same shared memory address,
which results in a broadcast where the data at that address is sent to all threads in one
transaction.

To get maximum performance, it is therefore important to understand how memory
addresses map to memory banks in order to schedule the memory requests so as to
minimize bank conflicts.

www.nvidia.com
Shared Memory Bank Conflicts Sample v2023.1.0 | 1

Chapter 2.
APPLICATION

The sample CUDA application transposes a matrix of floats. The input and output
matrices are at separate memory locations. For simplicity it only handles square matrices
whose dimensions are integral multiples of 32, the tile size.

The sharedBankConflicts sample is available with Nsight Compute under <nsight-
compute-install-directory>/extras/samples/sharedBankConflicts.

www.nvidia.com
Shared Memory Bank Conflicts Sample v2023.1.0 | 2

Chapter 3.
CONFIGURATION

The profiling results included in this document were collected on the following
configuration:

» Target system: Linux (x86_64) with a NVIDIA RTX A2000 (Ampere GA106) GPU
» Nsight Compute version: 2023.2.0

The Nsight Compute Ul screen shots in the document are taken by opening the profiling
reports on a Windows 10 system.

www.nvidia.com
Shared Memory Bank Conflicts Sample v2023.1.0 | 3

Chapter 4.
INITIAL VERSION OF THE KERNEL

The initial version of the kernel transposeCoalesced uses shared memory to ensure that
global memory accesses for loading data from the input matrix idata and storing data
in the output matrix odata are coalesced. The matrix is sub-divided into tiles of size 32 x
32. The tile size is defined as:

#define TILE DIM 32

For simplicity the code only handles square matrices whose dimensions are integral
multiples of 32, the tile size. Each block transposes a tile of 32 x 32 elements. Each thread
in the block transposes TILE_DIM/BLOCK_ROWS i.e. 4 elements, where BLOCK_ROWS
is defined as:

#define BLOCK ROWS 8
TILE_DIM must be an integral multiple of BLOCK_ROWS.

The way to avoid uncoalesced global memory access is to read the data into shared
memory, and have each warp access noncontiguous locations in shared memory in order
to write contiguous data to odata. The above procedure requires that each element in a
tile be accessed by different threads, so a __syncthreads () call is required to ensure

www.nvidia.com
Shared Memory Bank Conflicts Sample v2023.1.0 | 4

Initial version of the kernel

that all reads from idata to shared memory have completed before writes from shared
memory to odata commence.

__global void transposeCoalesced(float* odata, float* idata, int width, int
height)
{
__shared float tile[TILE DIM] [TILE DIM];

int xIndex blockIdx.x * TILE DIM + threadIdx.x;
int yIndex blockIdx.y * TILE DIM + threadIdx.y;
int indexIn = xIndex + yIndex*width;

xIndex = blockIdx.y * TILE DIM + threadIdx.x;
yIndex = blockIdx.x * TILE DIM + threadIdx.y;
int indexOut = xIndex + yIndex*height;

for (int i = 0; i < TILE DIM; i += BLOCK ROWS)

{
tile[threadIdx.y + i] [threadIdx.x] = idata[indexIn + 1 * width];

}

___syncthreads () ;

for (int i = 0; i < TILE DIM; i += BLOCK_ ROWS)
{
odata[indexOut + 1 * height] = tile[threadIdx.x] [threadIdx.y + i];

}
}
A depiction of the data flow of a warp in the coalesced transpose kernel is given below.
The warp writes four rows of the idata matrix tile to the shared memory 32x32 array
"tile" indicated by the yellow line segments. Aftera __syncthreads () call to ensure
all writes to tile are completed, the warp writes four columns of tile to four rows of an
odata matrix tile, indicated by the green line segments.

idata odata

tile

shared memory

global memory global memory

Profile the initial version of the kernel

There are multiple ways to profile kernels with Nsight Compute. For full details see the
Nsight Compute Documentation. One example workflow to follow for this sample:

» Refer to the README distributed with the sample on how to build the application
» Run ncu-ui on the host system

www.nvidia.com
Shared Memory Bank Conflicts Sample v2023.1.0 | 5

https://docs.nvidia.com/nsight-compute/index.html
https://docs.nvidia.com/nsight-compute/index.html

Initial version of the kernel

» Use alocal connection if the GPU is on the host system. If the GPU is on a remote
system, set up a remote connection to the target system

» Use the "Profile" activity to profile the sample application
» Choose the "full" section set
» Use defaults for all other options

Details page - GPU Speed Of Light Throughput

The details page "GPU Speed Of Light Throughput" section provides a high-level
overview of the throughput for compute and memory resources of the GPU used by the
kernel.

The duration for this initial version of the kernel is 5.59 milliseconds and this is used as
the baseline for further optimizations.

[NVIDIA Nsight Compute -] X
Eile Connection Debug Profile Tools Window Help

<) Connect » i Baselines » Metric Details

&h transposeCoalesced.ncu-rep [RO]

Page: Details ~ Result: 0- 518-transposeCoalesced * 'V ~ AddBaseline ~ = Apply Rules [EJ Occupancy Calculator Copy asImage ~

Result Time Cycles Regs GPU SM Frequency CC Process @000
Current 518-transp.. 5.59 msecond 3,142,854 24 0 - NVIDIARTX A2000 562.55 cycle/usecond 8.6 [655523] sharedBankConflicts

@ The report contains imported source files
= GPU Speed Of Light Throughput All

High-level overview of the throughput for compute and memory resources of the GPU. For each unit, the throughput reports the achieved percentage of utilization
with respect to the theoretical maximum. Breakdowns show the throughput for each individual sub-metric of Compute and Memory to clearly identify the highest
contributor. High-level overview of the utilization for compute and memory resources of the GPU presented as a roofline chart
Compu A) Throughput [%] 3 Duration [n

hroughput [%]

che Throughput [%]

e Throughput [%] 9 SM Frequency [cycle/usecond]

DRAM Throughput [%] 41.60 DRAM Frequenc le/nsecond]

The kernel is utilizing greater than 80.0% of the available compute or memory performance of the device. To further improve
@ High Throughput performance, work will likely need to be shifted from the most utilized to another unit. Start by analyzing L1 in the
section

The ratio of peak float (fp32) to double (fp64) performance on this device is 64:1. The kernel achieved 0% of this device's fp32

Roofline Analysis . " o ; - :
® ¥ peak performance and 0% of its fp64 peak performance. See the for more details on roofline analysis

GPU Throughput

Compute (SM) [%]

Memory [%]

0.0 200 400 50.0 60.0
Speed Of Light (SOL) [%]

For this kernel it shows a hint for High Throughput and suggests looking at the memory
workload analysis section. Click on Memory Workload Analysis.

Details page - Memory Workload Analysis section

The Memory Workload Analysis section shows a hint for Shared Load Bank Conflicts
and suggests looking at the Source Counters section for uncoalesced shared loads. The

www.nvidia.com
Shared Memory Bank Conflicts Sample v2023.1.0 | 6

Initial version of the kernel

Shared Memory table shows a high count of bank conflicts. Click on Source Counters to
identify the source line resulting in bank conflicts.

[NVIDIA Nsight Compute — m| hd
File Connection Debug Profile Tools Window Help

<) Connect » i Baselines » » i Metric Details
& transposeCoalesced.ncu-rep [RO]

Page: Details ~ Result 0- 518-transposeCoalesced *+ ¥ ~ AddBaseline ~ ApplyRules [Occupancy Calculator Copy as Image ~

Result Time Cycles Regs GPU SM Frequency CC Process ®O006

Curmrent 518-transp.. 5.59 msecond 3,142,854 24 0- NVIDIARTX A2000 562.55 cycle/usecond 8.6 [655523] sharedBankConflicts

«» Memory Workload Analysis Memory Tables ~ O

Detailed analysis of the memory resources of the GPU. Memory can become a limiting factor for the overall kernel performance when fully utilizing the involved
hardware units (Mem Busy), exhausting the available communication bandwidth between those units (Max Bandwidth), or by reaching the maximum throughput of
issuing memory instructions (Mem Pipes Busy). Detailed chart of the memory units. Detailed tables with data for each memory unit.

Memory Throughput [Gbyte/second] 95.85 Mem Busy [%]

L1/TEX Hit Rate [%] Max Bandwidth [%]

L2 Hit Rate [%] 4998 Mem Pipes Busy [%]

L2 Compression Success Rate [%] L2 Compression Ratio

MOory access pa for shared loads might not be optimal and causes on average a 32.2 - way bank
cross all 209 shared load req s.This results in 65011712 bank conflicts, which represent
9 of the overall 6 30 wavefronts for shared loads. Check the section for
uncoalesced shared loads.

A\ Shared Load Bank Conflicts

Shared Memory

Instructions Requests Wavefronts % S Bank Conflicts
Shared Load 2,097,152 20971
Shared Load Matrix 0
Shared Store 2,097,152 2) 0.6]
Shared Store From Global Load 0 0 0 0]
Shared Atomic 0 0 0 0 1]
Other = 0
Total 4194304 3 ! 86.4¢ I 65011,712

65,011,712

Details page - Source Counters section

The Source Counters section table for the metric "L1 Wavefronts Shared Excessive"
which is the indicator for shared memory bank conflicts lists the source lines with the
highest value. Click on one of the source lines to view the kernel source at which the
bottleneck occurs.

www.nvidia.com
Shared Memory Bank Conflicts Sample v2023.1.0 | 7

Initial version of the kernel

[NVIDIA Nsight Compute - 0 X
File Connection Debug Profile Tools Window Help

<] Connect » i Baselines » Metric Details

@ transposeCoalesced.ncu-rep [RO] X

Page: Details = | Result 0- 518-transposeCoalesced * '\ = AddBaseline ~ Apply Rules B[}ccuoancycaltulator Copy asImage ~

Result Time Cycles Regs GPU SM Frequency CC Process @000
Cumrent 518-transp.. 5.59 msecond 3,142854 24 0- NVIDIARTX A2000 562.55 cycle/usecond 8.6 [655523] sharedBankConflicts

(@ Occupancy Limiters This kernel's theoretical occupancy is not impacted by any block limit

= Source Counters O

Source metrics, including branch efficiency and sampled warp stall reasons. Stall € re periodically sampled ove! kernel runtime. They
indicate when s were stalled and couldn't be scheduled. See the documentation for a description of all stall reasons. Only focus on stalls if the schedulers fail
to issue eve

Branch Instructions [inst] 2 Branch Efficiency [%]

Branch Instructions Ratio [%] 0.02 Avg. Divergent Branches

This kernel has uncoalesced shared a ses resulting in a total of xcessive wavefronts (94% of ®
A Uncoalesced Shared Accesses the total 69206016 wavefronts). C the L1 Wavefronts Shared e table for the primary source
locations. The has an example on optir hared memory accesses.

L1 Wavefronts Shared Excessive

Location Value Value (%)

) 16,252 928

[B—

Source page

The CUDA source for the kernel is shown. When opening the Source page from Source
Counters section, the Navigation metric is automatically filled in to match, in this case
the "L1 Wavefronts Shared Excessive" metric. You can see this by the bolding in the
column header. The source line at which the bottleneck occurs is highlighted.

It shows shared memory bank conflicts at line #68:

odata[indexOut + i * height] = tile[threadIdx.x][threadIdx.y + 1i];

www.nvidia.com
Shared Memory Bank Conflicts Sample v2023.1.0 | 8

Initial version of the kernel

NVIDIA Nsight Compute —] X

File Connection Debug Profile Tools Window Help
<] Connect » © Baselines » » ¥ Metric Details

fh transposeCoalesced.ncu-rep [RO] X

Page: Source * Result 0- 518-transposeCoalesced ¥ 7 ~ AddBaseline ~ Apply Rules ﬂ Occupancy Calculator Copy asImage ~
Result Time Cycles Regs GPU SM Frequency CC Process
Current 518 -transposeCoalesced (256,256.. 5.59 msecond 3,142854 24 0-NVIDIARTX A2000 562.55 cycle/usecond 8.6 [655523] sharedBankConflicts

View: Source

Source: sharedBankConflicts.cu = B %% @

Navigation: L1 Wavefronts Shared Excessive v € RedoResolve

Access Access L1 Wavefronts
Source Operation Size Shared Excessive
C bank

——global__ * odata, * idata, width,
__shared__ tile[TILE_DIM][TILE_DIM];
xIndex = bleckIdx.x #* TILE_DIM + threadIdx.x;
yIndex = blockIdx.y * TILE_DIM + threadIdx.y;
indexIn = xIndex + yIndex#*width;
xIndex = blockIdx.y * TILE_DIM + threadIdx.
yIndex = blockIdx.x * TILE_DIM + threadIdx.y;

indexOut = xIndex + yIndexxheight;

< TILE_DIM; i += BLOCK_ROWS)

tile[threadIdx.y + il[threadIdx.x] = idata[indexIn + i # width]; Load(4), Store(d) 32(8)

Q;
i =9; i < TILE_DIM; i += BLOCK_ROWS)

odata[indexOut + i * height] = tile[threadIdx.x][threadIdx.y + i]; Load(4), Store(d) 32(8) 65011712

www.nvidia.com
Shared Memory Bank Conflicts Sample v2023.1.0 | 9

Chapter 5.
UPDATED VERSION OF THE KERNEL

Considering the shared memory bank conflicts reported by the profiler we analyze the
shared memory access pattern. The coalesced transpose uses a 32x32 shared memory
array of floats. For this sized array, all data in each column is mapped to the same shared
memory bank. As a result, when writing columns from the tile in shared memory to
rows in odata the warp experiences a 32-way bank conflict and serializes the request.

T T T2 T31

|/ / pd

L

o' v 2] - « « A30]| 31

3334« .. [62] 63
. . / . .
[] / L] -

997 993 | 994| - « « |1022|1023

Bank 0
Bank 1
Bank 2
Bank 30
Bank 31

A simple way to avoid this conflict is to pad the shared memory array by one column:
shared float tile[TILE DIM] [TILE DIM+1];

The padding does not affect shared memory bank access pattern when a warp writes
data to shared memory, which remains conflict free. But by adding a single column now
the access of data in a column from shared memory by a warp is also conflict free. In

the diagram below the elements in the extra column added for padding are shown with
grey background.

www.nvidia.com
Shared Memory Bank Conflicts Sample v2023.1.0 | 10

Updated version of the kernel

0 T1 T2 T31

32 | 33|34 - . . 62 | 63

9921993994 - + « 1022|1023
1024) 1025/ 1026 *« =« « |1054)1055

Bank O
Bank 1
Bank 2
Bank 30
Bank 31

Profile the updated kernel

The kernel duration has reduced from 5.59 milliseconds to 2.74 milliseconds. We can set
a baseline to the initial version of the kernel and compare the profiling results.

NVIDIA Nsight Compute

File Connection Debug Profile Tools Window Help
<) Connect Baselines Metric Details
fh transposeNoBankCon: cu-rep [RO] X

~ Result 0- 518-transposeNoBankConflicte + 7 ~ | AddBaseline ~ = Apply Rules E Occupancy Calculator Copy as Image ~
Report Result Time Cycles Regs GPU SM Frequency CC Process ®000
Current tra_cts 518 -transposeNoBankConflicts (.. 2.74 msecond 566 24 0- NVIDIA RTX A2000 561.14 cy second 86 [6) sharedBankConflicts

Baseline 1 tra_ced 518 -transposeCoalesced (256 5.59 msecond 3,1 24 0 - NVIDIA RTX A2000 562.5 cle/usecond 8.6

@ The report contains imported source files
w GPU Speed Of Light Throughput All

iew of the throughput for compute and memory resources of the GPU. For each unit, the throughput reports the achieved percentage of utilization with respect to the theoretical
maximum. Breakdowns show the throughput for each individual sub-metric of Compute and Memory to clearly identify the verview of the utilization for compute and
memory resources of the GPU presented as a roofline chart
Compute (SM) Throughput [%] 4718 (+104.27%)
8496 (-7.98%)
0 (-43.20%)

2
hroughput [%] 4260 (+103.98%) Frequenc
DRAM Throughput [%] 8496 (+104.24%) DRAM Frequ

@® High Throughput The kernel is utilizing greater than 80.0% of the ilable compute or memory perfermance of the device. To further improve performance, work will likely need to be
© 9 GNPUL hifted from the most utilized to another unit. Start by analyzing DRAM in the section.

@ Roofline Analysis The ratio of peak float (fp32) to double (fp64) performance on this d e is 64:1. The kernel achieved 0% of this device's fp ak performance and 0% of its fp64
peak performance. See the for more details on roofline analysis.

GPU Throughput

Compute (SM) [%]

Memory [%]

0.0 3 400 50.0 60.0
Speed Of Light (SOL) [%]

www.nvidia.com
Shared Memory Bank Conflicts Sample v2023.1.0 | 11

Updated version of the kernel

We can confirm that there are no shared memory bank conflicts by looking at the Shared
Memory metrics table under the Memory workload analysis section.

[NVIDIA Nsight Compute - O x
Eile Connection Debug Profile Tools Window Help

<) Connect » | Baselines » » £ Metric Details
h transpos lesced 0] % @ transposeNoBankConflicts.ncu-rep [RO] X

Page: Details ~ Result 0- 518-transposeNoBankConflict + N7 ~ AddBaseline ~ ApplyRules | [J Occupancy Calculator Copy asimage ~
Report Result Time Cycles Regs GPU SM Frequency CC Process @000
Current tra_cts 518- 2.74 msecond 1,538,566 24 0 - NVIDIA RTX A2000 561.14 cycle/usecond 8.6 332] sharedBankConflicts
Baseline 1 tr_ed 518-. 559 msecond 3,142,854 24 0- NVIDIARTX A2000 562.55 cyclefusecond 8.6 523]sharedBankConflicts

« Memory Workload Analysis Memory Tables ~ O

Detailed analysis of the memory resources of the GPU. Memory can become a limiting factor for the overall kernel performance when fully utilizing the involved
hardware units (Mem Busy), exhausting the available communication bandwidth between those units (Max Bandwidth), or by reaching the maximum throughput of
issuing memory instructions (Mem Pipes Busy). Detailed chart of the memory units. Detailed tables with data for each memory unit.

Memory Throughput [Gbyte/second] 19527 (+103.73%) Mem Busy [%] 4260 (-53.85%)
L1/TEX Hit Rate [%] 0 (+0.00%) Max Bandwidth [%] 8496 (+104.24%)
L2 Hit Rate [%] 5001 (+0.07% Pipes Busy [%] 47.18 (+104.27%)
L2 Compression Success Rate [%] 0 (+0.00%) Compression Ratio %

Shared Memory

Instructions Requests Wavefronts Bank Conflicts
Shared Load 2 (+0.00%) (

2,099,469 (-96.89%) 5 4%) 0 (-100.00%)
Shared Load Matrix '

Shared Store 2,097, (0%) 2,097, 0%) 2,097,152 (+0.00%) 0) 0 (+0.00%)
Shared Store From Global Load .00%) 0 (+0.00%)) (+0.00%)
Shared Atomic (+0.00%) 0 (+0.00%) 0 (+0.00%)

Other < > (6 () 0 (+0 b

Note that the reported bank conflicts in the shared memory metrics table under the
Memory workload analysis section includes:

» (A) conflicts within the warp due to shared memory access pattern for the active
threads of the warp; and

» (B) additional conflicts that are caused by multiple clients trying to access the
memory banks at the same time, as the L1 Cache and Shared Memory are both
backed by the same physical memory banks.

The Source Counters section in the Details page and the Source page only count
conflicts of type (A) mentioned above. So in some cases there can be a difference in
bank conflict counts between the Memory workload analysis and source counters. Also
due to conflicts of type (B) in some cases the bank conflicts can be non-zero for the
transposeNoBankConflicts kernel in the shared memory table.

www.nvidia.com
Shared Memory Bank Conflicts Sample v2023.1.0 | 12

Chapter 6.
RESOURCES

» GPU Technology Conference 2022 talk S41723: How to Understand and Optimize
Shared Memory Accesses using Nsight Compute

» NVIDIA CUDA Sample transpose document - Optimizing Matrix Transpose
in CUDA https://github.com/NVIDIA/cuda-samples/blob/master/
Samples/6_Performance/transpose/doc/MatrixTranspose.pdf

» NVIDIA CUDA Sample transpose source code transpose.cu
» Nsight Compute Documentation

www.nvidia.com
Shared Memory Bank Conflicts Sample v2023.1.0 | 13

https://www.nvidia.com/en-us/on-demand/session/gtcspring22-s41723/
https://www.nvidia.com/en-us/on-demand/session/gtcspring22-s41723/
https://github.com/NVIDIA/cuda-samples/blob/master/Samples/6_Performance/transpose/doc
https://github.com/NVIDIA/cuda-samples/blob/master/Samples/6_Performance/transpose/doc
https://github.com/NVIDIA/cuda-samples/blob/master/Samples/6_Performance/transpose/transpose.cu
https://docs.nvidia.com/nsight-compute/index.html

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF
NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA
Corporation assumes no responsibility for the consequences of use of such
information or for any infringement of patents or other rights of third parties
that may result from its use. No license is granted by implication of otherwise
under any patent rights of NVIDIA Corporation. Specifications mentioned in this
publication are subject to change without notice. This publication supersedes and
replaces all other information previously supplied. NVIDIA Corporation products
are not authorized as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA
Corporation in the U.S. and other countries. Other company and product names
may be trademarks of the respective companies with which they are associated.

Copyright
© 2023-2023 NVIDIA Corporation and affiliates. All rights reserved.

This product includes software developed by the Syncro Soft SRL (http://
WWWw.sync.ro/).

www.nvidia.com ﬁVIbiA®

	Table of Contents
	Introduction
	Application
	Configuration
	Initial version of the kernel
	Updated version of the kernel
	Resources

